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INTRODUCTION

Throughout this paper I deal with best approximation of elements of the
space C(X) of all continuous real-valued functions on a compact Hausdorff
topological space X in the uniform norm

ilfll = sup{ If(x)l: x EX}, fEC(X),

by elements of a vector subspace G of C(X) of finite dimension n ~ 1. For
f E C(X), the distance off to G is the non-negative real number

d(f) = inf{ Ilf - gil: gE G},

and the set of best approximations of f in G is the non-empty compact
convex subset

P(f) = {g E G: lif - gil = d(fn

of G. The (set-valued) metric projection of (C(X) onto) G is the mapping
P of C(X) into the power set of G which maps f E C(X) onto P(f), and a
continuous selection for the metric projection P of G is a continuous map
ping S of C(X) into G with the property that Sf E P(f) for every f E C(X).
G is called a Chebyshev subspace of C(X) if every f E C(X) has a unique
best approximation in G, and it is part of the folklore of the subject that
in this case the metric projection P of G, considered as a mapping of C(X)
into G, is continuous. A. Haar [16] gave the following intrinsic description
of Chebyshev subspaces of C(X).
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UNIQUE CONTINUOUS SELECTIONS 195

HAAR'S THEOREM. G is a Chebyshev subspace of C(X) iff any non-zero
function in G has at most n - 1 distinct zeros.

Haar already was aware of the fact that the existence of a Chebyshev
subspace of C(X) of dimension n ~ 2 imposes severe restrictions on
the underlying space X, and J. C. Mairhuber [19J, K. Siecklucki [23J,
P. C. Curtis [l1J, and I. J. Schoenberg and C. T. Yang [22J proved

MAIRHUBER'S THEOREM. The set of integers n ~ 1 with the property
C(X) contains an n-dimensional Chebyshev subspace is

(i) {1, ..., k} if X has only a finite number k of points;

(ii) p, 2,3, ... } if X is homeomorphic to an infinite closed subspace of
the unit interval [0, 1J = {t E lR: 0 ~ t ~ 1};

(iii) p, 3, 5, ... } if X is homeomorphic to the unit sphere Sl =
Ur, s) E [R;2: (r 2 + S2)1/2 = 1}; and

(iv) {I} in all other cases.

The purpose of this paper is to extend both Haar's theorem and
Mairhuber's theorem from the class of Chebyshev subspaces of C(X) to the
larger class of subspaces of C(X) whose metric projection has a unique
continuous selection. This is done in Section 1 and Section 2. In the exten
sion of Mairhuber's theorem, universal spaces other than [0, 1J and S 1

appear. These spaces-intervals with split points--are defined in .the
Appendix; it is also shown in the Appendix that intervals with split points
play an important role in areas other than Approximation Theory.

Now a few words on the origins of these results are in order. A. J. Lazar,
D. E.Wulbert, and P. D. Morris [17J, when dealing with continuClus
selections for the metric projection P of C(X) onto G, found it interesting
to consider the case that G is a Z-subspace of C(X), i.e., the interior
int Z(g) of the zero-set Z(g) of any non-zero function g in G is empty.
They were unaware of their misfortune to have mixed up a relevant
approximation-theoretic property of G with an entirely unrelated topologi
cal property of X: A. L. Garkavi [15J, in a Russian paper which had
appeared four years earlier but whose English translation was not to
appear for another year (see, however, the announcement of the main
results of [15J in [13J), had already studied the case that Gis an almost
Chebyshev subspace of C(X), i.e., the set offunctions in C(X) which do not
have a unique best approximation in G is of the first category in C(X), and
his description of such subspaces of C(X) (see Section 1) implies
immediately that

if dim G = 1 (dim = dimension of), then G is a Z-subspace of C(X)
G is almost Chebyshev; and
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if dim G~ 2, then G is a Z-subspace of C(X) iff G is almost
Chebyshev and X has no isolated points.

The first "victim" of this mix-up was A. L. Brown when he proved in [9]
that if G is a Z-subspace of C(X), then if P has a continuous selection it
is unique: This result is trivial once one knows that Z-subspaces of C(X)
are always almost Chebyshev (see the proposition in Section 1). And
Brown insisted when he proved in [10] that if G is a Z-subspace of C(X)
of dimension n~ 2 whose metric projection has a continuous selection,
then if X is metrizable, X is homeomorphic to a subspace of the unit sphere
S 1, and if X is not metrizable, X is homeomorphic to a subspace of an
interval with split points and G is I-Chebyshev (see Section 2) but not
Chebyshev: This result is not "an extension to Mairhuber's theorem," as
Brown claims in the title of his paper, because not every Chebyshev sub
space of C(X) is a Z-subspace, and to call it "an extension of Mairhuber's
theorem for Z-subspaces (whose metric projection has a continuous selec
tion)," as Brown disclaims the title of his paper in the introduction, seems
a bit awkward; I think that, if anything, it should be called an extension
of Mairhuber's theorem for spaces without isolated points. In any event, I
owe to this very paper of Brown's the idea that an extension of
Mairhuber's theorem should indeed exist, and in particular the idea that
intervals with split points should appear as new universal spaces in this
extension. The latter idea had a special appeal to me because of one inter
val with split points I had encountered previously as the Gelfand space of
the Banach algebra of all regulated real-valued functions on the unit inter
val [0,1] (see, e.g., [3]), and the first thing I did upon reading Brown's
paper was to prove the results contained in the Appendix of the present
paper, namely that intervals with split points can be interpreted as precisely
the Gelfand spaces of certain algebras of regulated real-valued functions on
the unit interval or, alternatively, as all the order compactifications of the
unit interval itself. These results along with the conjecture that Mairhuber's
theorem had an extension to subspaces of C(X) whose metric projection
has a unique continuous selection I announced in [4] at the 22nd meeting
of the Brazilian Analysis Seminar in November, 1985. I did not take up
work on the proof of this conjecture, however, until about a year later
when, during a course on Approximation Theory I gave at the Federal
University of Rio de Janeiro, I discovered a missing link: The metric pro
jection P of C(X) onto G has a unique continuous selection (if and) only
if it has a continuous selection and G is almost Chebyshev (see the proposi
tionin Section 1). With this information at hand, I proved that the condi
tions (1 )-(3) in the theorem in Section 1 are necessary for the metric
projection P of G to have a unique continuous selection. I then proved the
theorem in Section 2 using in the embedding part of the proof only the
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conditions (1 )-(3) on G. And I intended to prove that these conditions are
also sufficient for the metric projection P of G to have a unique continuous
selection exploiting precisely the extra information on the underlying space
X thus obtained from (the proof of) the theorem in Section 2, when I was
surprised by a preprint of W. Us paper [18]. I saw immediately that using
Li's main result (see Section 1) I could complete the proof of the theorem
in Section 1 without recourse to the theorem in Section 2, and therefore
announced the two theorems in [5]. When writing up the present paper,
I decided to make the proof of the theorem in Section 1 even more depend
ent on Li's result, mainly in order to localize where exactly the two results
differ. Since Li's proof of his result is extremely difficult, however, I con
tinue to work, now jointly with T. Fischer, on an independent and simpler
proof of the theorem in Section 1.

I conclude this introduction with a diagram (Fig. 1) of the classes of
subspaces encountered so far. The inclusions "Chebyshev c continuous
selection" and "Z c almost Chebyshev" !;is well as the identity "unique
continuous selection = continuous selection!1 almost Chebyshev" have
been explained already, and simple,atmost 2-dimensional, examples
subspaces in positions 1 through 7 are easily constructed using the results
in the present paper. Now, one glance at this diagram makes it evident why
Z-subspaces should not be in the picture.

continuous selection unique continuous selection

~r-----------,

z

Chebyshev almost Chebyshev

FIGURE 1
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1. ON THE ApPROXIMATING SUBSPACES OF C(X)

PROPOSITION. The metric projection P of C(X) onto G has a unique
continuous selection iff it has a continuous selection and G is an almost
Chebyshev subspace of C(X).

Proof The "if" part follows directly from the definitions involved: If G
is almost Chebyshev, then any two continuous selections for P coincide on
a dense subset of C(X), and therefore are identical.

We now turn to the "only if" part. Theorem and Lemma 3 of J. Blatter
and L. Schumaker [6] combined yield immediately that if P has a con
tinuous selection, then for every f E C(X) and for every E > 0 there exists an
f, E C(X) such that Ilf - f,ll < E and

P(fJ = {Sf:S a continuous selection for P}.

This implies immediately that if P has a unique continuous selection, then
the set

U = {J E C(X): P(f) is a singleton}

is dense in C(X), and this, as A. L. Garkavi [14, pp. 171-172 of the English
translation] has shown, is enough for G to be almost Chebyshev. For
curiosity only, we include a much simpler proof of Garkavi's result for the
present finite-dimensional case using the folkloric fact that in this case· P is
upper semi-continuous: For each kEN set

Uk = {J E C(X): P(f) is contained in some open subset
of G of diameter less than 11k}.

Obviously, U= nkEN Ub and therefore, along with U, each Uk is dense in
C(X). Now observe that, by the very definition of upper semi-continuity,
each Uk is open in C(X).

A. L. Garkavi [15, Theorem I and last paragraph on p. 186 of the
English translation] gave the following intrinsic description of almost
Chebyshev subspaces of C(X).

G is an almost Chebyshev subspace of C(X) iff for any non-zero function
gin G,

card int Z(g) ~ n -1 .

(card = cardinal number of), and for any k ~ n - 1 distinct isolated points
Xl' ... , Xk of X,
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We shall have occasion to use the following modification of Garkavi's
conditions.

LEMMA. G is an almost Chebyshev subspace of C(X) ifffor any non·zero
function g in G,

card int Z(g) ~ n - dim{h E G: h = 0 on int Z(g)}.

Proof Suppose G satisfies Garkavi's conditions. If g E G '" {O} is such
that int Z(g);f- 0, then int Z(g) consists of k ~ n -1 isolated points
Xl> ... , Xk of X, and therefore

dim{h E G: h =0 on int Z(g)}

=dim{h E G: h(xd = ... = h(xk ) = O} ~n -k.

Thus G satisfies our condition.
Now suppose G satisfies our condition. If g E G", {O}, then

dim{hE G: h=O on int Z(g)}? 1,

and therefore card int Z(g) ~ n -1. Thus G satisfies the first of Garkavi's
conditions. Now Garkavi's first condition obviously implies that his second
condition holds for k = n, and therefore we may and shall prove the second
condition by induction over k = n, ..., 1: Let k ~ n - 1 distinct isolated
points Xl' ... , Xk of X be given and set

If X has no isolated points other than Xl' ..., Xb then int Z( g) = {x 1> •.. , xd
for any g EH", {O}, and therefore

H= {hEG:h=OonintZ(g)}.

Thus k ~ n - dim H in this case. If X has an isolated point Xk + 1 distinct
from Xl' ... , Xb set

H'= {hEH:h(Xk + 1 )=O},

observe that dim H' ~ n - (k + 1) by the hypothesis of our induction, and
conclude that dim H ~ dim H' + 1~ n ~ k also in this case. Thus G also
satisfies the second of Garkavi's conditions.

F. Deutsch and G. Nurnberger [12] introduced weakly interpolating
subspaces of C(X).

G is called a weakly interpolating subspace of C(X) if for any n distinct
points x I' ... , X n of X and any n signs (J 1, ... , an in {-I, 1}, there exists a
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non-zero function g in G such that, for each i = 1, ..., n, the function (Jig is
non-negative on a neighborhood of Xi.

W. Li [18J introduces regular weakly interpolating subspaces of C(X).
G is called a regular weakly interpolating subspace of C(X) if for any

non-empty finite subset F= {Xl' ..., xd of X with the property
that F""intZ(G(F))~0(G(F)={gEG:g=0on F} and Z(G(F))=
n {Z(g): gEG(F)}) and for any signs (Jl> ... , (Jk in {-1, l}, there exists a
function g in G such that F"" int Z(g) ~ 0 and, for each i = 1, ..., k, the
function (Jig is non-negative on a neighborhood of Xi.

W. Li [18, Theorem 1.1] then gives the following intrinsic description of
subspaces of C(X) whose metric projection has a continuous selection.

The metric projection P of C(X) onto G has a continuous selection iff G
is a regular weakly interpolating subspace of C(X).

And ·W. Li [18, Theorem 1.2J notes that for Z-subspaces of C(X) this
description can be much simplified.

If G is a Z-subspace of C(X), then the metric projection P of C(X) onto
G has a continuous selection iff any non-zero function in G has at most n
distinct zeros and G is a weakly interpolating subspace of C(X).

THEOREM. The metric projection P of C(X) onto G has a unique con
tinuous selection iff

(1) any non-zero function in G has at most n distinct zeros;

(2) for any k;o;;;. n distinct isolated points Xl> ..• , Xk of X,
dim{gEG: g(xd= ... =g(xk)=O};o;;;.n-k; and

(3) G is a weakly interpolating subspace of C(X).

Proof Suppose P has a unique continuous selection. By U's first
theorem, G is a regular weakly interpolating subspace of C(X), and this is
easily seen to imply (cf. W. Li [18, Lemma 4.1J) that G is a weakly inter
polating subspace of C(X), i.e., G satisfies condition (3). By the proposi
tion, G is almost Chebyshev, and this, by Garkavi's description of almost
Chebyshev subspaces, implies that G satisfies condition (2). Also, by the
lemma,

card int Z(g);o;;;. n - dim{h EG: h =0 on int Z(g)}

for all g EG "" {O}. Now, W. Li [18, Theorem 5.1 J shows that whenever G
is regular weakly interpolating, then

card bdry Z(g);o;;;. dim{h E G: h = 0 on int Z(g)}

(bdry = boundary of) for all g E G. And these two inequalities combined
obviously imply that G also satisfies condition (l).
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Now suppose G satisfies conditions (1 )-(3). By Garkavi's description of
almost Chebyshev subspaces, conditions (1) and (2) together imply that G
is almost Chebyshev, and therefore, by the proposition, we need only show
that P has a continuous selection. This we do by showing that conditions
(1) and (3) together imply that G is regular weakly interpolating (and then,
of course, appealing to the other half of Li's first theorem):
F = {x I' ... , xd be a non-empty finite subset of X with the property that
F", int Z(G(F)) oF 0 and let (J l' ... , (Jk E { -1,1}. If k> n, then, by condi
tion (1), G(F) = {O} whence Z(G(F)) = X and therefore Fe int Z(G(F)}, a
contradiction. Thus k ~ n and therefore, by condition (3), there exists
g E G'" {O} such that, for each i = 1, ..., k, (Jig:;:' 0 on a neighborhood of
Now, if all points of F are isolated points of X, then F is open and therefore
(FeZ(G(F))!) Feint Z(G(F)), the same contradiction. Thus not all points
of F are isolated points of X and therefore, again by condition (1) (note
that g # O!), F", int Z(g) # 0. This does it.

Remarks. 1. Simple I-dimensional examples show that no two of the
conditions (1)-(3) imply the third.

2. Our proof that conditions (1) and (3) together imply that G
regular weakly interpolating is a variation of Li's argument to deduce the
"if" part of his second theorem from that of the first.

3. The special cases of the theorem that G is I-dimensional and X
arbitrary and that G is arbitrary and X a real interval were proved by
1. Blatter and L. Schumaker [6, 7] building on earlier work of A. 1. Lazar,
D. E. Wulbert, and P. D. Morris [17] and G. Nurnberger and M. Sommer
(see [20J and the references therein).

2. ON THE UNDERLYING SPACES X

W. Li [18, Theorem 6.1] proves the foHowing theorem on determinants.

If G is a regular weakly interpolating subspace of C(X), then, given a
basis gj, ..., gn for G and given distinct points Xj, ... , Xn of X, there exist
neighborhoods Ui of the Xi and a sign (J in {-I, I} such that for any
points Yi in the Ui,

[

gj(Yj)" .gn(Yl)]
(J det: :;;:, o.

gj(Yn)'" gn(Yn)

And A. L. Garkavi [15, p. 186 of the English translation] stated without
proof the foHowing theorem on determinants.
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If G is an almost Chebyshev subspace of C(X), then, given a basis
gl, ..., gn for G, given distinct points Xl' ..., Xn of X, and given
neighborhoods Vi of the Xi' there exist points Yi in the Vi such that

[

gl(Yd" .gn(Yd]
det: : #0.

gl(Yn)" ·gn(Yn)

Since Garkavi actually stated a false version of this theorem, we include a

Proof The proof is by induction over the dimension n of G and uses
Garkavi's description of almost Chebyshev subspaces of C(X).

The theorem is trivially true for n = 1. Suppose then that the theorem has
been proved for n ~ m and that dim G = m + 1. Let g I, ... , gm + I be a basis
for G, let Xl' ..., Xm+l be distinct points of X, and, for each i, let Vi be a
neighborhood of Xi' We distinguish two cases.

Suppose X has no isolated point. In this case, let z be any point in X
which is not a common zero of the functions in G. We may and shall
assume that z is not one of XI, ...'Xm+l . Set H={gEG:g(Z)=O} and
observe that H is an m-dimensional almost Chebyshev subspace of C(X).
Let hi' , hm be a basis for H and let hm + lEG be linearly independent
of hi' , hm' By hypothesis, there exist points Y I' ... , Ym in V 1> ... , V m'
respectively, such that

Set

XEX.

g is a non-zero function in G, and therefore g(Ym + I) # 0 for some
Ym+IEVm+I' Now observe that det(gi(Yj))i,j~I,...,m+1 is a non-zero
multiple of g(Ym+d.

Now suppose X has isolated points. If all of X I' ..., X m + I are isolated
points of X, then det(gi(xj))i,j=I, .. ,m+I#O and we are done. Suppose
therefore in addition that not all of Xl' ..., Xm+l are isolated points of X. In
this case, let z be an arbitrary isolated point of X. We may and shall
assume that z is not one of XI' ... , Xm and that either Xm+ 1= Z or else Xm+ I

is not an isolated point of X. Set H= {gIX~ {z}: gEG and g(z)=O}
(I = restricted to), and observe that H is an m-dimensional almost
Chebyshev subspace of C(X~ {z}). Let hi, ..., hm E G be such that their
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restnctlOns to X", {z} are a basis for H, and let hm + 1 E G be linearly
independent of hi, ..., hm • Again by hypothesis, there exist points Y l' ..., Ym

in U 1 , ..., Um' respectively, such that

As before, set

XEX.

Then, as before, g is a non-zero function in G, and therefore, as before,
g(Ym+ d # 0 for some Ym+ 1 E Um+1 if X m+1 is not on isolated point of
if X m + 1 is an isolated point of X, however, then X m + 1 = z, and therefore

The same argument as in the first case now concludes the proof.

LEMMA. If the metric projection P of C(X) onto G has a unique
continuous selection and if the dimension n of G is ~ 2, then

(i) if X is homeomorphic to S\ n is odd;

(ii) no proper subspace of X is homeomorphic to SI; and

(iii) no subspace of X is homeomorphic to the subspace

-L = {(r, S)EiJ~2: -1 ~r~ 1, O~s~ 1 andrs=O}

of 1R 2
.

Proof (i) We suppose Sl has been identified with X and we assume to
the contrary that n is even. Let gl' ..., gn be a basis for G. By Garkavi's
theorem on determinants, there exist distinct points x 1,o, ... , xn,o of Sl in
positive order such that

Set

L1 = {p = (Xl' ... , X n ) E (Sl t: two of Xl' ... , X n coincide},

denote by C the connected component of Po = (xl,o, ... , xn,o) in(SI t '"
and define 15: C --> IR by

e5(p) = det(gJxJ L,j= 1, ...,n,
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It is easily seen that PI = (X2,O, ... , Xn,O, xI,o) belongs to the path-component
of Po in (S I t ~ LI, and therefore to C. Since n is even, b(pd = -b(po).
Thus pOS(b)={pEC:b(p»O} and neg(b) = {pEC:b(p)<O} are both
non-empty. Since 15 is continuous and C is connected, 2(15) is also non
empty. Now, it is easily seen that C is open in (SI )n, and therefore, by
Garkavi's theorem on determinants, inte 2(15) = 0 whence cle pOS(b) U

cl e neg(b) = C (cle = closure in C of). Since C is connected, cl e pOS(b) (l

cl e neg(b) =1= 0, a contradiction to Li's theorem on determinants.

(ii) We assume to the contrary that SI is homeomorphic to a proper
subspace of X and we suppose S I has been identified with this subspace.
We distinguish two cases.

Suppose n is even. In this case, {g IS I: g E G} is an n-dimensional
subspace of C(SI) which satisfies conditions (1)-(3) of the theorem in
Section 1 (for the dimension and for (3) note that no non-zero function in
G is zero on S!, and for (2) note that SI has no isolated points), i.e., is an
even-dimensional subspace of C(SI) whose metric projection has a unique
continuous selection, a contradiction to (i).

Now suppose n is odd. Since SI is a proper subset of X, there is a point
z in X ~ SI which is not a common zero of the functions in G (there is at
most one common zero of the functions in G, and if there is one, it is not
an isolated point of X). Then H = {gl SI: g E G and g(z) = O} is an (n -1)
dimensional subspace of C(SI) which satisfies the conditions (1)-(3) (for
n - 1!) of the theorem in Section 1 (for (3) argue as follows: Let
XI> ... , X n _ I be distinct points of S I and let (j I> ... , (jn _ I be signs in { -1, 1}.
There exist non-zero functions g + and g - in G such that, for each i =
1, ..., n-1, (jig+ and (jig- are non-negative on a neighborhood of Xi and
such that g+ and - g- are non-negative on a neighborhood of z. Then,
obviously, some convex combination of g+ and g- belongs to Hand ... ).
Thus H is an even-dimensional subspace of C(SI) whose metric projection
has a unique continuous selection, again a contradiction to (i).

(iii) We assume to the contrary that .1 is homeomorphic to a sub
space of X and we suppose .1 has been identified with this subspace. As
before, H = {g I .1: g E G} is an n-dimensional subspace of C(.l) whose
metric projection has a unique continuous selection, Let hI, ..., hn be a basis
for H. By Garkavi's theorem on determinants, there exist distinct points
x I •O, ... , xn,o of the vertical branch of .1 in ascending order such that

det(hi(xj,o))i.j= I, .... n =1= O.

Set
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denote by C the connected component of Po = (XI 0, ..., X n 0) in 1- n ~ 11, and, ,

define b: C -+ IR by

A cute "four movements" argument shows that PI = (xz,o, x 1,o, x 3,o, ..., xn,o)
belongs to the path-component of Po in 1- n '" 11, and therefore to C.
Obviously, <5(Pl) = -<5(po), and now a contradiction is reached just like in
the proof of (i).

In our extension of Mairhuber's theorem we shall have occasion to dis
tinguish grades of non-Chebyshev: For an integer 0 ~ k ~ n - 1, G is called
a k-Chebyshev subspace of C(X) if for any f in C(X) the dimension of the
set P(f) of best approximations of fin G is at most k; in particular, G
is a O-Chebyshev subspace of C(X) iff it is a Chebyshev subspace.
G. S. Rubinstein [21] extended Haar's theorem as follows.

G is a k-Chebyshev subspace of C(X) iff for any n - k distinct points
Xl' ... , Xn_k of X,

dim{gEG:g(X I )='" =g(xn_d=O}~k.

THEOREM. The set of integers n ~ 1 with the property that C(X) contains
an n-dimensional vector subspace whose metric projection has a unique
continuous selection is

(i) {I, ..., k} if X has only a finite number k ofpoints, and in this case
all examples are necessarily Chebyshev;

(ii) {I, 2, 3, ... } if X is homeomorphic to an infinite closed subspace of
the unit interval [0, 1], and in this case for all n> 1 there are examples
which are Chebyshev and examples which are not (n - 1)-Chebyshev;

(iii) {1, 3, 5, ... } if X is homeomorphic to the unitsphere S\ and in this
case for all odd n > 1 there are examples which are Chebyshev and examples
which are not (n - 1)-Chebyshev;

(iv) {I, 2} if X is homeomorphic to a closed subspaceofsome interval
with split points T(0, D +), D + c [0, 1), and if the set ofpoints t in D + with
the property that both t and t + are in that subspace is uncountable, and in
this case all 2-dimensional examples are necessarily I-Chebyshev but not
Chebyshev; and

(v) {l} in all other cases.

Proof The proof of the theorem is divided into three parts, namely an
embedding theorem, an analysis of metrizable and non-metrizable closed
subspaces of intervals with split points, and the construction of examples.
We begin with the

640/61/2,6
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EMBEDDING THEOREM. If for some integer n ~ 2, C(X) contains an
n-dimensional vector subspace G whose metric projection has a unique
continuous selection, then either X is homeomorphic to a subspace of some
interval with split points T(0, D+), D+ c [0, 1), or else X is homeomorphic
to the unit sphere Sl (and n is odd).

Proof We prove this theorem by induction over the dimension n of G.
For n = 2 we distinguish two cases.

Suppose n = 2 and G is I-Chebyshev. Fix a basis g I' gz for G. By
Rubinstein's theorem, gl and gz have no common zero, and therefore we
may define cp: X -+ SI by

XEX.

cp is obviously continuous. Set

p=(r,s)ESt,

i.e., Lp is the line in IR z through the origin and p. It is clear then that

cp(x)ELp iff x is a zero of sgl-rgzEG~ {O},
x E X, and p = (r, s) ES I.

Since cardZ(g)~2 for all gEG~{O}, cardcp-l[Lp]~2 for all pESI.
This shows that cp is not surjective: Were cp surjective it would necessarily
be injective too, and therefore a homeomorphism of X onto St, a con
tradiction to item (i) of the lemma. Thus cp[X] is a proper closed subset
of St, and therefore contained in some open arc. This arc is homeomorphic
to the open unit interval (0, 1), and we set ljJ = Yf 0 cp, where Yf is some such
homeomorphism. We have already seen that card ljJ -I [ {t} ] ~ 2 for all
t E (0, 1). Suppose now t is a point in (0, 1) with the property that
ljJ-I[{t}] contains two points, say Xl and Xz. Then with p=(r,s)ES I

such that I1(P)=t we have cp-I[{p}]={xl,xZ }' This is to say that
g(xd = cg(xz) for all g E G, where

Set

XEX.
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Since g I and g 2 have no common zeros, g E G - {O}. Also

By Li's theorem on determinants, there exist disjoint neighborhoods
and U2 of Xl and X2' respectively, and a sign a E { -1, I} such that
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and applying this to the two representations of g, we see immediately that
ag?: 0 on UI and -acg?: 0 on U2. Now, since Xl and X2 are zeros of both
g and sg I - rg2, and since no non-zero function in G has more than two
zeros, g and sgI - rg2 must be multiples of each other, and we conclude
(note that c>O) that for some sign a'E {-I, I}, a'(sgI-rg2»Oon
UI - {xd and a'(sgI-rg2)<0 on U2- {X2}, and this, inthe geometric
language introduced above, means that <p[UI - {xd] and <p[U2 - {xJ]
lie in opposite of the two open half-planes determined by the line Lp , or
(note that the homeomorphism 11 is necessarily "monotone") that
lj;[ UI - {Xl}] and lj;[ U2- {x2}] lie in opposite of the two open intervals
(0, t) and ft, I). We finally note that, by Garkavi's description of almost
Chebyshev subspaces, not both of Xland X2 can be isolated points of
i.e., at least one of UI - {X2} and U2- {x2} is non-empty. We set

D + = {t E (0, I): card lj; ~ I [{ t}] = 2}

and define lj; +: X -+ T(0, D +) by

if tElj;[X] is such that lj;-I[{t}] = {x}, then lj;+(X) = lj;(x); and

if tElj;[X] is such that lj;-I[{t}] = {Xl' X2} with, say, Xl not an
isolated point of X, then lj;+(xI)=t and lj;+(x2)=t+ or lj;+(xI)=t+ and
lj; +(x2 ) = t according as lj; maps some neighborhood of X I into (0, t] or
[t, I).

lj; + is well-defined and injective. That lj; + is also continuous is all but a
direct consequence of the definitions involved.. Since X is compact, lj;+ is a
homeomorphism onto lj; + [X] c T(0, D +), and weare done in this case.

Next suppose n = 2 and G is not I-Chebyshev. Fix a basis g I ,g2 forGo
By Rubinstein's theorem, gj and g2 have a common zero z. By our general
assumption on G, z is the only common zero of gland g2' any g E G - {O}
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has at most one zero in X ~ {z}, and z is not an isolated point of X. There
fore we may define cp: X ~ {z} -+ Sl by

XEX~{Z},

and cp, aside from being continuous, has the property that
card cp -1 [LpJ :os; 1 for all pES 1, where the Lp's are the lines defined in the
first part of the proof, and this is to say that cp is injective and cp [X~ {z}J
contains no pair of antipodal points of S 1; moreover, for every x E X ~ {z},
there exists a neighborhood Ux of z which does not contain x such that cp
maps the non-empty set Ux ~ {z} into one of the two open half-planes
determined by the line L'I'(x): Let x E X ~ {z} and set

YEX.

Then g E G~ {O} and, by Li's theorem on determinants, there exist a
neighborhood Ux of z which does not contain x and a sign U E { - 1, I}
such that ug~O on Ux ' Now observe that Ug=U(g2(X) gl- gl(X) g2»0
on Ux ~ {z} and that

L'I'(x) = {(u, v) E [R2: (gi(x) + g~(x)) -1/2 (g2(X) U - gl(X)V) = O}.

Let I: be the set of points P in SI with the property that for some net
{Xi LEI in X ~ {z} which converges to z, the net {cp(xd LE I converges to
p. Since z is not an isolated point of X, I: is not empty. Given x E X ~ {z},
then, since cp maps Ux ~ {z} into one of the two open half-planes deter
mined by the line L'I'(x), I: is contained in one of the two closed half-planes
determined by L'I'(x)' Since X ~ {z} contains at least two distinct points Xl
and X 2 , and since the lines L'I'(xtl and L'I'(X2) do not coincide, it follows that
I: is contained in one of the four closed quadrants determined by L'I'(xd and
L'I'(X2); in particular, I: contains no pair of antipodal points of SI. Now,
would I: contain three points, say PI' P2, and P3 with P2 on the minor arc
between PI and P3' then, since P2 is the limit of some net {cp(x;)LE/' PI
and P3 would eventually be contained in opposite of the two open half
planes determined by the line L'I'(Xi)' a contradiction. Thus I: has either one
or two points (and both can actually occurl). We treat these two cases
separately.

Suppose I: = {p, q}. In this case the situation is as shown in Fig. 2,
where A and B denote the minor closed arcs between P and - q and
between q and - p, respectively. Since for any x E X ~ {z}, p and q belong
to the same of the two closed half-planes determined by the line
L'I'(x),cp[X~{z}JcA\.:JB (\.:J=disjoint union of). This implies that
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B A

FIGURE 2

neither p nor q belongs to <p[X'" {z}]: Were p=<p(x) for some
x EX", {z}, for example, then <pC UX '" {z}J, being contained in one of the
two open half-planes determined by the line Lp and containing p in its
closure, would have to be contained in A, and therefore could not contain
q in its closure, a contradiction. Now, let A \:J Blp = q be the quotient space
of A \:J B obtained by identifying the points p and q, let n be the quotient
map, and define t/!: X -+ A \:J Blp = q by

t/!(x) = {n(<p(x))
n(p)=n(q)

if XEX~{Z}

if x=z.

t/! is continuous and injective, and therefore a homeomorphism of X onto
t/![X). Obviously, A \:J Blp = q is homeomorphic to the unit interval [0, 1].
So much for this case.

Now suppose I = {p }. In this case, define ip: X -+ S I by

ip(x) = {~(X) if XEX~{Z}

if x = z.

ip is a continuous extension of <p to all of X. If p ¢ <p [X '" {z}], ip is also
injective, and therefore a homeomorphism of X onto the proper closed
subset ip[X] of Sl. Thus X can be embedded into the unit interval [0, 1]
in this case, and we are left with the case that p = <p(y) for some
y EX", {z} (this can actually occur!). The situation then is as shown in
Fig. 3, where A denotes that of the two closed semi-circles between p and
-p which contains <pC Uy '" {z}] in its interior. If C is an open and closed
subset of X which contains y but not z, then ip IC and ip.j X'"
homeomorphisms onto proper closed subsets of Sl which induce in
obvious fashion an embedding of X into the unit interval [0, 1). We prove
now that such a C indeed exists: Suppose not. Let V be an arbitrary open
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p

FIGURE 3

A

neighborhood of y whose closure does not contain z. The set q> - I[A] n
(X'" V) is a closed neighborhood of z which does not contain y, and the
identity

q>~I[A] n (X'" V) = {z} \J (q>-I[int A] n (X'" V))

shows that q> -1 [A] n (X'" V) is also open if q> -1 [int A] eX", V. Thus, by
our supposition, there exists a net {Yi} i E I in X which converges to Y such
that q>(yJ E int A for all i. Now, let N be a closed neighborhood of z which
does not contain y. By our supposition, N is not open, and therefore
q>[bdry N] (bdry = boundary of) is a non-empty closed subset of SI which
does not contain p. Thus, denoting by B i the minor closed arc between p
and q>(yJ, we have that eventually Yi EX", Nand q>-I[BJ n bdry N = 0.
For such an i, q> -1 [Bi] n N is a closed neighborhood of z which does not
contain y and the identity

q>-l[B i ] n N = (q>-l[B i ] n int N) \J (q>-l[BJ n bdry N)

= q>-l[BJ n int N = {z} \J (q>-l[int BJ n int N)

shows that q> - 1 [B i] n N is also open, a contradiction.
With the case n = 2 now out of the way, suppose that the embedding

theorem has been proved for 2 ~ n ~ m and that dim G = m + 1. We
distinguish three cases.

Suppose X has an isolated point z. In this case, H = {g IX", {z }: g E G
and g(z) = O} is an m-dimensional vector subspace of C(X", {z}) whose
metric projection has a unique continuous selection. By item (ii) of the
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lemma, X ~ {z} is not homeomorphic to S 1, and therefore, by hypothesis,
X ~ {z} can be embedded into some interval with split points. It is clear
then how X can be so embedded.

Now suppose X has no isolated point but is not connected. Let X be the
disjoint union A \.:J B of two non-empty closed subsets A and B. Since is
open, it has no isolated point. Since B is not a singleton, it contains a point
z which is not a common zero of the functions in G. Thus, H = {g IA: g E G
and g(z) = o} is an m-dimensional vector subspace of C(A) whose metric
projection has a unique continuous selection. By item (ii) of the lemma,
A is not homeomorphic to SI, and therefore, by hypothesis, A can be
embedded into some interval with split points. By symmetry, the same
holds for B, and thus for X.

Finally, suppose X is connected. Since X has at least three points, G con
tains a function g which has positive values, negative values, and zeros.
Since Z( g) is finite and since X ~ Z( g) is no longer connected, there exist
a finite, possibly empty, set F of zeros of g and another zero y of g
that X ~ F is still connected but (X~ F) ~ {y} is not. Let (X~ F) ~ {y} be
the disjoint union A \.:J B of two non-empty closed subsets A and B. is
easily seen that the closures of A and B in X ~ F are the setsA \.:J {y} and
B \.:J {y}, and that these sets are connected. It follows that c1 A and B
(closures in X!) are also connected, and it is clear that cl A u cl B=X
Since B is open in X, it contains a point z which is not a common zero
the functions in G. Since z E B, z ¢: cl A. Thus, H = {g Icl A: g E G
g(z) = o} is an m-dimensional vector subspace of C(cl A) whose metric pro
jection has a unique continuous selection. By item (ii) of the lemma, cl A
is not homeomorphic to S 1, and therefore by hypothesis, there exists a
homeomorphism !J of cl A onto a subspace of some interval with split
points T(0, D +), D + c [0, 1). !J [cl A] is a dosed connected subset of
T(0, D +) with more than one point. As in any compact totally ordered
topological space (see the Appendix), this means that 1] [d A 1is the closed
interval (in T(0, D+)!) [inf!J[cl AJ, sup !J[cl AJ] (inf (sup) = infimum
(supremum) of), that !J[d A] contains no gaps, and that infry[cl A
sup 1J [cl A]. The "no gaps" condition in the case at hand means
no tED + can !J [cl A] contain both t and t +. Thus, the restriction to
!J[d A] of the canonical projection 1t of T(0, D+) onto the unit interval
[0, 1] is (continuous and) injective, and qJ = no rJ is a homeomorphism of
cl A onto a non-degenerate dosed subinterval of [0, 1]; and we may and
shall assume that this subinterval is aU of [0, 1]. Since A C! {y} is con
nected and dense in clA, qJ[A \.:J {y}] is one of [0, IJ, [0, 1), (0, IJ, and
(0, 1). It follows that qJ[bdry A ~ {y} J is contained in {O, I}. The
qJ(Y) mayor may not be one of °and 1. By symmetry, there exists a
homeomorphism !/J of cl Bonta [0, 1] such that !/J [bdry B ~ {y }] is con
tained in {O, I}, and again the point !/J(y) mayor may not be one of 0
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1. It is obvious now that X is either homeomorphic to one of the three
plane figures shown in Fig. 4, where the circle marks the image of the point
y, or else to a figure obtained from one of these by identifying some of its
extremities. The first figure itself is homeomorphic to the unit interval
[0, 1], and the figure obtained from it by identifying its two extremities is
homeomorphic to the unit sphere 8 1

; the other two figures, however, as
well as any figure obtained from one of them by identifying some of its
extremities, all contain the figure 1- of item (iii) of the lemma, and therefore
the possibility that X is homeomorphic to one of these is excluded. The
embedding theorem is proved.

We now turn to the second part of the proof of the theorem. We suppose
that for some integer n ~ 2, C(X) contains an n-dimensional vector sub
space G whose metric projection has a unique continuous selection and
that X is not homeomorphic to the unit sphere 8 1

. Then, by the embedding
theorem, X is homeomorphic to a subspace of some interval with split
points T(0, D +), D + c [0, 1), and we assume X has been identified with
this subspace. Let J.: be the set of all points t in D + which have the
property that both t and t + are in X. We distinguish two cases.

Suppose J.: is countable. There exists a function cp: [0, 1] ---+ IR which is
strictly increasing from cp(O)=O to cp(1)= 1, and which is left-continuous
at all points of (0, 1] and right-continuous precisely at the points of
[0, 1) '" J.:: This is obvious if J.: is finite, and if J.: is not finite, say
J.:= {t 1 , t2 , ... }, an example of such a cp is

1 1
cp(t) ="2 t + J.: ti < t 2i+ l' tE[O,1],

where the empty sum is taken to be zero. As we shall see in the Appendix,
there exists a unique non-decreasing and continuous function ip on
T(0, D +) such that ip I [0, 1] = cp, and it is all but obvious that ip IX is
strictly increasing. Thus, ip IX is an embedding of X into the unit interval
[0, 1]; in particular, X is metrizable.

----<0""'---

FiGURE 4
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Now suppose}; is not countable. For each t E};, define fl: X --+ IR by

if x ~ t,
'f + XE X.
I X~ t ,

Clearly, all the f/s are continuous, and the distance between any two. of
them is 1. Thus, C(X) is not separable, and thisis well known to mean just
that X is not metrizable. Next, fix a basis g I' ... , g n for G. Clearly, each of
the g/s has a continuous extension li!; to all of T(0, D+). As we shall see
in the Appendix, the functions I/J;=li!; I [0,1] are regulated functions on
[0, 1] which are left-continuous at all points of (0, 1] and right-continuous
at all points of [0, 1) ~ D +. By the classical fact that the set of discon
tinuities of a regulated real-valued function on [0,.1] is countable, for each
i there exists a countable subset D; of D + such that I/J; is also right-con
tinuous at all points of D + ~ D;. It is all but obvious that a I/J; is right-con
tinuous at a point tin D+ iff li!;(t) = li!;(t+). Thus, if we set D = U7= 1 D;,
then g(t) = g(t+) for all g E G and all t E}; ~ D. Now, since D is countable
and }; is not, };~ D is uncountable and therefore contains n - 1 distinct
points t 1 , ... , tn-I' Clearly, there exists a non-zero function g in G such
that g(td='" =g(tn~I)=O. Then, as we have just seen, also
g(tn = ... = g( t:-_d = 0, so that g has 2(n - 1) distinct zeros. On the
other hand, by condition (1) of the theorem in Section 1, g has at most n
distinct zeros, and therefore n = 2. A repetition of the argument above, only
with n = 2 this time, shows that for every t E }; ~ D there exists a
g lEG,..", {O} such that Z( g t) = {t, t + }, and therefore G is hChebyshev but
not Chebyshev. At this point we have all but proved the theorem: With
exception of the folkloric fact that in case X is finite the metric projection
of any G is lower semi-continuous and therefore, by Michael's selection
theorem, has a unique continuous selection (if and) only if G is Chebyshev,
all that is missing are the examples. We shall use part (ii) of the following
proposition in the construction of one of the examples. The proposition,
however, is of independent interest.

PROPOSITION. (i) (A. L. Garkavi [15, final remark]). Iffor some integer
n ~ 2, C(X) contains an n-dimensional almost Chebyshev subspace, then
has at most 2No isolated points.

(ii) If for some integer n ~ 2, C(X) contains an n-dimensional vector
subspace whose metric projection has a unique continuous selection, then
has at most ~o isolated points.

Proof (i) Let X o denote the set of isolated points of X and suppose that
card Xo> 2No

• Let gland g2 be any two linearly independent functions
in C(X). g1 is constant on some subset XI of X o of cardinality > 2No:
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If not, card g[' [ {r }] :;:;; 2Ko for every r E IR, and therefore card X 0 :;:;;

card Ur E n<l g[' [ {r }J = 2Ko • 2No = 2No, a contradiction. A repetition of this
argument with X, in the place of Xo and g2 in the place of g, shows that
g2 is constant on some subset X 2 of X, of cardinality > 2Ko

• Thus, some
non-trivial linear combination of g, and g2 is zero on X 2 , and therefore
cannot be contained in any n-dimensional almost Chebyshev subspace of
C(X).

(ii) Since the unit sphere S' has no isolated points, by the embed
ding theorem, we are left with the case that X is homeomorphic to a sub
space of some interval with split points T(0, D +), D + c [0, 1), and we
assume that X has been identified with this subspace. As for any compact
totally ordered topological space (see the Appendix), the topology of X is
the order topology, and therefore a point x in X which is neither the first
nor the last point of X is an isolated point of X iff it has a predecessor (in
X!) x ~ and a successor x + . A moment's reflection shows that for any such
isolated point x of X,

{t E [0, 1]: nx _ +Hnx - nx _ ) < t < nx + ! (nx + - nx)},

where n is the canonical projection of T(0, D +) onto the unit interval
[0, 1], is a non-degenerate open interval contained in (0, 1), and that for
any two such isolated points of X these intervals are disjoint. Thus, the set
of isolated points of X is countable.

We now provide the examples required to complete the proof of the
theorem. The Chebyshev examples in cases (i), (ii), and (iii) of the theorem
are well known and shall not be discussed here. If for some integer n ~ 2,
G is an n-dimensional Chebyshev subspace of C(X), if x is a non-isolated
point of X, and if h is a non-negative continuous function on X with a
single zero at x, then h· G = {h . g: g E G} is an n-dimensional vector sub
space of C(X) which satisfies conditions (1)-(3) of the theorem in Section 1
(for (3) observe Haar's theorem and the trivial fact that the Haar condition
that any non-zero function in G have at most n - 1 distinct zeros is equiv
alent to the condition that for any n distinct points Xl' ... , X n of X and any
n signs (J 1, ... , (J n in {-I, 1}, there exists a function g in G such that
g(xJ = (Ji for all i), so that the metric projection of h . G has a unique con
tinuous selection. By Rubinstein's theorem, h . G is not (n - 1)-Chebyshev.
This takes care of the non-Chebyshev examples in cases (ii) and (iii) of the
theorem, and now all we need is an example in case (iv). Accordingly, sup
pose X is a closed subspace of some interval with split points
T(0, D+), D+ C [0,1), and that L= {tED+: both t and t+ are in X} is
uncountable. By part (ii) of the proposition, certainly L o= {tED+: both t
and t+ are isolated points of X} is countable. As we have seen in the
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second part of the proof of the theorem, there exists a strictly increasing
function q;: [0, 1] ~ IR which is left-continuous at all points of (0, 1] and
right-continuous precisely at the points of [0, 1) "'"' I o, and there exists a
unique non-decreasing and continuous function iP on T(0, D +) such
iP I [0, 1] =q;. It is all but obvious that the sets of constancy of iP IX which
are not singletons are precisely the two-point sets {t, t +} for t is I "'"'
Thus, the multiples of iP IX together with the constant functions on X form
a 2·dimensional vector subspace of C(X) which satisfies conditions (1 )
of the theorem in Section 1. This does it.

Remarks. 1. Simple examples show that the bounds for the number of
isolated points of X in parts (i) and (ii) of the proposition are both sharp.

2. It would be nice if one could prove part (ii) of the proposition
without recourse to the embedding theorem.

3. Our proof of the theorem does not make use of Mairhuber's
theorem; it in fact contains a proof of this theorem which compares
favourably with all others known.

4. Very little seems to be known about examples in cases (ii) and
of the theorem which are k-Chebyshev but not (k 1)-Chebyshev for some
l:::::;k:::::;n-l.

5. Before conduding this section, we feel obliged to say a word or
two about why, contrary to what we related in the Introduction, our proof
of the theorem does depend on Li's paper [18]. The only result of Li's
paper we use in our proof is his theorem on determinants. All we actually
need, however, is the special case of this theorem that G satisfies cbllditions
(1 )-(3) of the theorem in Section 1. And precisely this special case of Us
theorem we had proved well before learning of U's paper.

APPENDIX: ON INTERVALS WITH SPLIT POINTS

Given a subset D - of the interval (0, 1] and a subset D + of the interval
[0, 1), we consider the disj oint (!) union

It is obvious that the definition

for every tED -, t - is the predecessor of t, and for every
tED + , t + is the successor of t,

extends the canonical order of the unit interval [0, 1] to a total order for
T(D -, D +), and we provide T(D -, D +) with the topology induced
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this order, i.e., the smallest topology for T(D -, D +) which contains all
the sets {yET(D-,D+):y<x} and {YET(D-,D+):x<y} for some
x E T(D -, D +). This topology is obviously Hausdorff and, using the fact
that every subset of T(D-, D +) has a supremum, it is a mildly intricate
exercise to prove that it is also compact. An interval with split points is one
of the sets T(D - , D +) together with the order and the topology just
described. We note that T(0, 0) is the unit interval [0, 1J with its usual
order and topology.

For D- c (0, 1J and D+ c [0,1), K(D-, D+) is the set of all non
decreasing real-valued functions on the unit interval [0, 1J which are left
continuous at all points of (0, 1J ~ D - and right-continuous at all points
of [0, 1)~ D +, and r(D -, D +) is the smallest topology for the unit inter
val [0, 1J which renders the functions in K(D -, D +) continuous. It is
obvious that K(D -, D +) is a uniformly closed lattice cone (lattice cone =
convex cone which is closed under the lattice operations) of non-decreasing
real-valued functions on [0, 1J which contains the cone K(0, 0) of all
continuous non-decreasing real-valued functions on [0, 1J; the last fact
implies trivially that the topology r(D -, D +) contains the usual topology
r(0, 0) of [0, 1].

Conversely, let K be any uniformly closed lattice cone of non-decreasing
real-valued functions on [0, 1] which contains the cone K(0, 0), and let
r be the smallest topology for [0, 1] which renders the functions in K con
tinuous. J. Blatter [2, 2.7 TheoremJ, using the Characterization Theorem
of J. Blatter and G. L. Seever [8J, shows that K is the set of all non
decreasing real-valued functions on [0, 1J which are r-continuous, and this
result, modulo some fiddling around with idempotent functions in K, yields
immediately that K = K(D -, D +), where D - is the set of all points in
(0, 1J at which some function in K is not left-continuous and D + is the set
of all points in [0, 1) at which some function in K is not right-continuous.

A real-valued function on the unit interval [0, 1J is called regulated if it
has finite left-sided limits at all points of (0, 1] and finite right-sided limits
at all points of [0, 1). Such functions are obviously bounded. For
D- c (0, 1J and D+ c [0,1), A(D-, D+) is the set of all regulated 'real
valued functions on the unit interval [0, 1] which are left-continuous at all
points of (0, 1J ~ D - and right-continuous at all points of [0, 1) ~ D +. It
is obvious that A(D -, D +) is a uniformly closed algebra of regulated real
valued functions on [0, 1] which contains the algebra A(0, 0) of all con
tinuous real-valued functions on [0,1]. it is also obvious that A(D-, D+)
contains (the vector lattice of all real-valued functions of bounded variation
on [0, 1J which are left-continuous at all points of (0, 1] ~ D - and right
continuous at all points of [0, 1) ~ D +) K(D -, D +) - K(D -, D +). It is
not at all obvious, however, that A(D-, D+) = cl(K(D-, D+)
K(D -, D +)) (cl = uniform closure). To see this, let f E A(D-, D+) and let
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8> 0. Since f is regulated, for every t E (0, 1] there exists a(t) E (0, t) such
that If(r)- f(s)I:'(8 for all r, SE [a(t), t), and for every tE [0,1) there
exists b(t)E (t, 1) such that \f(r)- f(s)I:'(1:: for all r, SE (t, b(t)]. By com
pactness, there exists a finite number I ~ 1 of points t 1> .•• , t l in (0, 1) such
that

1

[0, 1]=[0,b(0))u U (a(tj ),b(tj ))u(a(1), 1].
j~1

Set to=O and t l+ 1 =1, call the distinct points among to, .. ·, 1>

a(t 1 ), ... , a(tl+l)' and b(to), ..., b(tl) in increasing order Co, ..., Ck+l' and
define a (linear spline) function g: [0, 1] -+ IR by stipulating that g coincide
withfat the points Co, ... , Ck+l and hCo+cd, ... , !(Ck+Ck+d, and that
i = 1, ... , k + 1, g be

linear and continuous on [c l -1> HC I -l +ci)] if c l _ 1 ¢D+,

constant on (c I _ 1> ~ (c1- 1 + CI)] if C1- 1 ED + ,

constant on U(ci-I + Ci), Ci) if Ci E D -, and

linear and continuous on U(C i - 1 +c;), ctJ if ci¢D-.

It is easily seen that g is a linear combination of the functions

0:'(t:'(1, i=O, 1,

if O:'(t:'(~(C;_I+C,.), '=1 k 1
l
'f 1 ( ) 1 I , ... , + ,

2: C i - 1 +C i <t:'( ,

if 0:'( t < cI , . _

l
'f IE {1, ..., k + l} such that CI ED,

c;:'(t:'(1,

and

+ {Olji'2(t)=
I, 1

if O:'(t:'(c;,. { L +
. lEO, ..., k} such that c i ED' .
If cl <t:'(1,

Since all these functions are in K( D ~ , D +), g is in K( D ,D +) 
K(D -, D +), and therefore we'll be through if we can show that
Ilf - gil :'( 8: Let i E {O, ..., k + 1}. Clearly, at least one of

for some j E {O, ..., I}

and

for some j E { 1, ..., I + 1}
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occurs. Suppose the latter. In this case i # 0 and a( tj ) ~ Ci _ 1 < Ci ~ tj . By
the construction of a( tj ),

If(r)-f(s)1 ~e for all r, SE [Ci-b c;).

And by the construction of g, if t is one of Ci_ l' HCi_ 1 + Ci), and Ci' then
g(t)=f(t); if tE(Ci_ b HCi-l +ci)), then

C;_l ED+ => get) = g(HCi- 1 + c;)) => If(t) - g(t)j

= If(t) - g(HCi-l + c;))1

= If(t)- f(Hci-l +c;))1 ~e,

and

Ci_ 1 ¢:. D + => g( t) = ageCi_ d + (l - a) g( H c; _ 1 + Ci))

for some a E (0,1) => If(t) - g(t)1 ~ a If(t) - g(ci_ dl + (1- a) If(t)
g(HCi-l + c;))1 = alf(t) -f(c;_dl + (l-a)lf(t) - f(!(Ci-l + c;))1
~ ae + (1 - a) e = e; and if t E (HCi_ 1 + c;), c;), then

CiE D- => get) = g(HCi-l + c;)) => If(t) - g(t)1

= If(t) - g(!(Ci- 1 + c;))1

= If(t)- f(Hc i- 1 +ci))1 ~6,

and

Ci ¢:. D - => g(t) = ag( ~ (ci_ 1 + Ci)) + (1 - IX) g(Ci)

for some IX E (0, 1) => If(t) - g(t)1 ~ IX If(t) - g(!(Ci- 1 + c;))1 + (1- IX)
If(t) - g(c;)1 = a If(t) - f(Hci-l + c;))1 + (I-a) If(t) - f(c;) 1~ (observe
that c;¢:.D- and therefore If(r)-f(s)l~e for all r,sE[ci_l,c;])~lXe+

(1- IX)e = e.
Thus, If(t)-g(t)I~e for all tE[Ci_bC;] ifciE(a(tj),tj ] for some

jE{l, ... ,l+I}. By symmetry, If(t)-g(t)I~e for all tE[Ci,Ci+1 ] if
CiE [tj , b(tJ) for somejE {O, ..., l}. We're through.

Now let A be any uniformly closed algebra of regulated functions on
[0, 1] which contains the algebra A(0, 0) and which is generated by its
cone of non-decreasing functions, i.e., A = cl(K - K) with K = {jE A: fnon
decreasing}. We have seen already that K=K(D-, D+), where D- is the
set of all points in (0, 1] at which some function in K is not left-continuous
and D + is the set of all points in [0, 1) at which some function in K is not
right-continuous. And we have also seen already that cl(K(D-, D+)
K(D - , D +)) = A (D - , D +). These two facts imply first that D - also is the
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set of all points in (0, 1J at which some function in A is not left-continuous
and D + the set of all points in [0, 1) at which some function in A is
not right-continuous, and then that A =c1(K - K) = c1(K(D-, D+)
K(D-, D+)) =A(D-, D+).

With the aid of the above characterizations of the cones K(D -, D +) and
the algebras A(D-,D+) one deduces from the results of J. Blatter [2,3J
and 1. Blatter and G. L. Seever [8J the two interpretations of intervals
with split points alluded to in the Introduction.

A totally ordered topological space is a set X provided with a total order
and a topology which contains the topology induced by that order. An
order compactification of a totally ordered topological space X is a pair
(Y, x) consisting of a compact totally ordered space Y and a mapping
x: X -? Y such that

x is a topological embedding,

x is an order embedding, i.e., x(x) ~ x(y) iff x ~ y, and

x [X] is dense in Y.

Two order compactifications (Yj , xd and (Yz, xz) of a totally ordered
topological space X are equivalent if there exists a mapping rp: Yl -?

such that

rp is a topological isomorphism,

rp is an order isomorphism, and

THEOREM. (i) The totally ordered topological space [0, 1] with the usual
order and some topology r which contains the usual topology has an order
compactification iff r is one of the topologies r(D ~ , D + );

(ii) If D - c (0, 1J and D + c [0, 1), then [0, 1] with the usual order
and the topology r(D-, D+) has, modulo equivalence, a unique order com
pactification, namely the interval with split points T(D - ,D +) together
the inclusion mapping, and moreover U I [0, 1J: f E C( T(D ~ , D + )) non
decreasing} = K(D - , D + ).

Let A be a commutative real Banach algebra which has an identity and
which satisfies the Arens conditions

1+fZ is invertible and liP II = II.fll z for all f EA.

The Gelfand space of A is the set r A of all non-zero multiplicative linear
functionals on A topologized as a subspace of the product space !RIA. r A is
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a non-empty compact Hausdorff topological space. For f E A, the Gelfand
transform off is the function]: rA -> IR defined by

!(y) = y(f),

The Gelfand transform of A, f I-> J, is a multiplicative linear isometry of A
onto qrA)'

THEOREM. If D - c (0, 1] and D + c [0, 1) and if for each
xET(D-,D+) the functional bx:A(D-,D+)->1R is defined by

{

f(t- )

bx(f) = f(t)

f(t+ )

if x = t - for some t ED - ,

if x=tE[O,l],

if x = t + for some tED + ,

then the mapping x I-> bx is a homeomorphism of the interval with split points
T(D-,D+) onto the Gelfand space rA(D-,D~) of the algebra A(D-,D+),
and therefore the extension mapping f I-> fob is a multiplicative linear
isometry of A(D-, D+) onto' C(T(D-, D+)).

Remarks. 1. There do exist topologies for [0, 1] between T(0, 0) and
r( (0, 1], [0, 1)) other than the topologies r(D -, D +), and there do exist
uniformly closed algebras of bounded functions between A(0, 0) and
A((O, 1], [0,1)) other than the algebras A(D-, D+).

2. In the special case that D - = (0, 1] and D + = [0, 1), the last
theorem was first proved by S. Berberian [1]; see, however, the discussion
in J. Blatter [3].

Note added in proof 1. The referee points out that W. Li ("Various continuities of metric
projections in Co(T, X)," 1. Approx. Theory 57 (1989), 150--168) also discovered a link
between the uniqueness of continuous selections and the almost Chebyshev property and, in
particular, proved the proposition in Section 1 in the case that X is metrizable.

2. The referee also points out that the theorem in Section 1 remains true if C(X) is
replaced by Co(X), X a locally compact Hausdorff topological space, and that it would
be interesting to know if the theorem in Section 2 can be extended in the same way; that
both Haar's theorem and Mairhuber's theorem can be so extended is due to, respectively,
R. R. Phellps ("Uniqueness of Hahn-Banach extensions and unique best approximations,"
Trans. Amer. Math. Soc. 95 (1960), 238-255) and J. A. Lutts ("Topological spaces which
admit unisolvent systems," Trans. Amer. Math. Soc. 111 (1964), 44Q-448).
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